

Aquaforest OCR
SDK for .NET

Reference Guide Version 1.41

October 2013

© Copyright 2013 Aquaforest Limited

http://www.aquaforest.com/

1

CONTENTS

1 INTRODUCTION .. 3

1.1 SDK OVERVIEW .. 3
1.2 TECHNICAL SUPPORT... 3

2 SDK OVERVIEW .. 4

2.1 SYSTEM REQUIREMENTS ... 4
2.1.1 Supported Environments ... 4
2.1.2 .NET Framework .. 4
2.1.3 Visual C++ Runtime ... 4

2.2 LICENSING ... 4
2.3 FOLDERS.. 5
2.4 A SIMPLE EXAMPLE.. 5

2.4.1 References ... 5
2.4.2 Classes .. 5
2.4.3 Processing Steps ... 5
2.4.4 C# Example .. 6
2.4.5 VB.NET Example .. 7

3 APPLICATION DEVELOPMENT AND DEPLOYMENT ... 8

3.1 REFERENCES.. 8
3.2 DEPLOYING C# AND VB.NET APPLICATIONS .. 8
3.3 DEPLOYING ASP.NET APPLICATIONS ... 8
3.4 LICENSING ... 8

4 SAMPLE APPLICATIONS... 9

5 API REFERENCE .. 10

5.1 PREPROCESSOR CLASS .. 10
5.1.1 Constructor ... 10
5.1.2 Properties ... 10
5.1.3 Methods .. 12

5.2 OCR CLASS ... 13
5.2.1 Constructor ... 13
5.2.2 Properties ... 13
5.2.3 Methods .. 15
5.2.4 Events ... 17
5.2.5 Subscribing to StatusUpdate using C# ... 17
5.2.6 Subscribing to StatusUpdate using VB.NET ... 18
5.2.7 Enumerations .. 18

5.3 STATUSUPDATEEVENTARGS CLASS .. 19
5.3.1 Constructor ... 19
5.3.2 Properties ... 19
5.3.3 Words Class .. 20
5.3.4 Constructor ... 20
5.3.5 Properties ... 20
5.3.6 Methods .. 20
5.3.7 WordData Class .. 21
5.3.8 Properties ... 21

5.4 PDFMERGER CLASS ... 22
5.4.1 Constructor ... 22
5.4.2 Methods .. 22

5.5 ERROR HANDLING ... 23
5.6 DISPOSAL AND TEMPORARY FILES FOLDERS .. 23
5.7 MULTI-THREADED APPLICATIONS .. 23
5.8 ADVANCED PRE-PROCESSING .. 23

2

5.9 PROPERTIES FILE ... 24

6 BACKGROUND - SEARCHABLE PDFS ... 27

6.1 WHAT IS A SEARCHABLE PDF? ... 27
6.2 INSIDE A SEARCHABLE PDF .. 27
6.3 OCR ACCURACY ... 27

6.3.1 Original Image Quality... 27
6.3.2 Image DPI and Format ... 27
6.3.3 Despeckle .. 27
6.3.4 Deskew .. 28
6.3.5 Auto-Rotate ... 28
6.3.6 Graphics Areas ... 28
6.3.7 Language Settings... 28

6.4 HARDWARE AND PERFORMANCE ... 28
6.4.1 CPU Power ... 28
6.4.2 Exploiting Multiple CPUs ... 28
6.4.3 Memory ... 28

7 ACKNOWLEDGEMENTS ... 29

3

1 INTRODUCTION

1.1 SDK Overview

The Aquaforest OCR SDK for .NET incorporates the same high performance OCR engine that is

included in the Aquaforest TIFF Junction and Autobahn DX products.

The SDK API allows developers full control over OCR processing to enable customized integration of

OCR within .NET applications.

 OCR Bitmap or multi-page TIFF and PDF Files.

 Create Searchable PDF, RTF or Text output files.

 Control pre-processing options such as despeckle, deskew, line removal and autorotate.

 Specify one of the following supported document languages:

English

German

French

Russian

Swedish

Spanish

Italian

Russian English

Ukrainian

Serbian

Croatian

Polish

Danish

Portuguese

Dutch

Czech

Roman

Hungar

Bulgar

Slovenian

Latvian

Lithuanian

Estonian

Turkish

 Enumerate the OCR results, examining the words and characters recognized along with their

co-ordinates.

 Process multi-page TIFF and PDF files one page at a time or all in one operation

1.2 Technical Support

Please contact Aquaforest Technical Support with any queries by email at support@aquaforest.com. If

required, telephone support is also available; please contact Aquaforest using the telephone contact

details provided on the company website contact page.

mailto:support@aquaforest.com

4

2 SDK OVERVIEW

The SDK is provided as a set of .NET Assemblies, Native DLLs and configuration files designed to

allow for straightforward integration into .NET applications.

2.1 System Requirements

2.1.1 Supported Environments

Windows XP, 2003, 2008, Vista, 7

2.1.2 .NET Framework

.NET Version 3.5

2.1.3 Visual C++ Runtime

The Visual C++ 2008 Redistributable package is required for deployment as well as development.

2.2 Licensing

There are a couple of changes in the way this release is licensed; this is to offer buyers a higher

flexibility. The table below shows a breakdown of the licensing.

Function

B
as

ic

E
d

it
io

n

S
ta

n
d

ar
d

E
d

it
io

n

A
d

v
an

ce
d

E
d

it
io

n

OCR from Bitmap or TIFF X X X

Image Pre-Processing and Auto-Rotation X X X

Support for 23 Languages X X X

.NET Programmatic / Zonal Access to results X X X

Txt / RTF Output X X X

1 Thread X X X

PDF Merging X X X

PDF Input X X

Searchable PDF Output X X

2 Threads X X

Stamps on PDF Output X X

Unlimited Threads X

Advanced MRC Compressed PDF Output X

Advanced Pre-Processing X

5

2.3 Folders

The SDK contains the following folders:

Bin – This contains all the assemblies, DLLs and configurations files

Docs – SDK Documentation

Samples – Sample C#, VB.NET and ASP.NET samples

2.4 A simple example

The full API reference is in section 5 of this guide, but as a starting point a simple example of a C# and

VB.NET console application that creates a searchable PDF from a source TIFF file is described below.

2.4.1 References

A reference to the Aquaforest.OCR.Api DLL should be added in your application.

If you wish to access the results of the OCR on a word by word basis, for example to obtain word and

character results including positional information then you will also need to reference

Aquaforest.OCR.Definitions DLL.

2.4.2 Classes

There are two classes used for the OCR:

PreProcessor – This class configures and performs image pre-processing (such as deskewing images)

to ensure optimal OCR performance.

Ocr – This is the class that configures and performs the Optical Character Recognition.

Additionally, for accessing the OCR results at an individual word level the following classes are used:

Words – This class contains a collection of words in which is contained all the data available for the

words and characters for any given page.

WordData – This class contains a collection of characters that make up the word along with the

positional information for each character and the whole word.

StatusUpdateEventArgs – This class is available for each page processed when subscribing to the

StatusUpdate event and provides information relating to the processing outcome for the page.

2.4.3 Processing Steps

The following steps are involved in this example

1. Create the Ocr and PreProcessor objects

2. Specify the location of the OCR bin folder

3. Specify Pre-Processor options

4. Specify OCR Options

5. Read the source file

6. Perform the recognition

7. Save the searchable PDF

8. Delete temporary files (these are by default stored in %TEMP% but the location can be

specified using ocr.TempFolder)

6

2.4.4 C# Example

using System;

using Aquaforest.OCR.Api;

namespace ocr

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 // 1. Create Ocr and Preprocessor Objects

 // and enable console output

 Ocr _ocr = new Ocr();

 PreProcessor _preProcessor = new PreProcessor();

 _ocr.EnableConsoleOutput = true;

 // 2. OCR bin folder Location

 // The bin files can be copied to the application bin

 // folder. Alternatively the System Path and ocr

 // Resource folder can be set as shown below and

 // then just the files in the bin_add folder added

 // to the application bin folder.

 string OCRFiles = @"C:\Aquaforest\OCRSDK\bin\x32";

 System.Environment.SetEnvironmentVariable("PATH",

System.Environment.GetEnvironmentVariable("PATH") + ";" + OCRFiles);

 _ocr.ResourceFolder = OCRFiles;

 // 3. Set PreProcessor Options

 _preProcessor.Deskew = true;

 _preProcessor.Autorotate = false;

 // 4. Set OCR Options

 _ocr.Language = SupportedLanguages.English;

 _ocr.EnablePdfOutput = true;

 // 5. Read Source TIFF File

 _ocr.ReadTIFFSource(

@"C:\Aquaforest\OCRSDK\docs\tiffs\sample.tif");

 // 6. Perform OCR Recognition

 if (_ocr.Recognize(_preProcessor))

 {

 // 7. Save Output as Searchable PDF

 _ocr.SavePDFOutput(

@"C:\Aquaforest\OCRSDK\docs\tiffs\sample.pdf", true);

 }

 // 8. Clean Up Temporary Files

 _ocr.DeleteTemporaryFiles();

 }

 catch (Exception e)

 {

 Console.WriteLine("Error in OCR Processing :" + e.Message);

 }

 }

 }

}

7

2.4.5 VB.NET Example

Module Module1

 Sub Main()

 ' 1. Create Ocr and Preprocessor Objects

 Dim _ocr As New Aquaforest.OCR.Api.Ocr()

 Dim _preProcessor As New Aquaforest.OCR.Api.PreProcessor()

 _ocr.EnableConsoleOutput = True

 ' 2. OCR bin folder Location

 ' The bin files can be copied to the application bin folder.

 ' Alternatively the System Path and ocr Resource folder

 ' can be set as shown below.

 Dim OCRFiles As String

 ' 2. OCR bin folder Location

 ' The bin files can be copied to the application bin

 ' folder. Alternatively the System Path and ocr

 ' Resource folder can be set as shown below and

 ' then just the files in the bin_add folder added

 'to the application bin folder.

 OCRFiles = "C:\\Aquaforest\\OCRSDK\\bin\\x64"

 System.Environment.SetEnvironmentVariable("PATH",

System.Environment.GetEnvironmentVariable("PATH") + ";" + OCRFiles)

 _ocr.ResourceFolder = OCRFiles

 ' 3. Set PreProcessor Options

 _preProcessor.Deskew = True

 _preProcessor.Autorotate = False

 ' 4. Set OCR Options

 _ocr.Language = Aquaforest.OCR.Api.SupportedLanguages.English

 _ocr.EnablePdfOutput = True

 ' 5. Read Source TIFF File

_ocr.ReadTIFFSource("C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.tif")

 ' 6. Perform OCR Recognition

 If _ocr.Recognize(_preProcessor) Then

 ' 7. Save Output as Searchable PDF

_ocr.SavePDFOutput("C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.pdf", True)

 End If

 '8. Clean Up Temporary Files

 _ocr.DeleteTemporaryFiles()

 End Sub

End Module

8

3 APPLICATION DEVELOPMENT AND DEPLOYMENT

3.1 References

To use the API a reference to Aquaforest.Ocr.Api must be included in your application. If you wish to

enumerate the OCR results rather than simply generate PDF, RTF or TXT outputs then you will also

need to add a reference to Aquaforest.Ocr.Definitions.

3.2 Deploying C# and VB.NET Applications

Any deployment method should ensure that the target system meets the requirements (see section 2.1)

and install the Visual C++ 2008 Redistributable package and Net Version 3.5 framework if necessary in

addition to the full contents of the SDK bin folder.

For building and deploying C# and VB.NET applications, the recommended approach is to specify the

full path of the SDK bin folder to the ocr resource folder (_ocr.ResourceFolder) as shown in the

sample code in section 2.4.4 above.

3.3 Deploying ASP.NET Applications

The same two approaches that work for C# and VB.NET can also be employed for ASP.NET

applications. Note that with trial licenses a pop-up dialog box appears on the server.

3.4 Licensing

Production system deployment requires that a license string is defined in the code. The license string

defines the number of concurrent OCR processes that can be run.

For example:

ocr.License =

"MT0xMjM0NTY7BLk4uT3RoZXOzM9NDs0PVRydWEYzMDRFOEQxMzg0QkQ5ODREQTk3RQ";

If the string is not specified, the SDK will run in evaluation mode. In evaluation mode:

 A trial “pop-up” will appear for each document processed

 Generated searchable PDFs will include indelible watermarks

 Only 3 pages are generated for text or RTF files.

9

4 SAMPLE APPLICATIONS

The samples folder includes a number of sample applications in C#, VB.NET and ASP.NET. The

solutions provided are all created using Visual Studio 2008 and conversion to Visual Studio 2010 is

handled automatically by that IDE. Conversion to Visual Studio 2005 is also possible. In this case you

must ensure that version 3.5 of the .NET Framework is installed on your system and then simply copy

the classes/forms into a new project and add the missing references.

Description of the sample applications are described in the Cookbook found in the “docs” folder.

10

5 API REFERENCE

To use the API a reference to Aquaforest.Ocr.Api must be included in your application. If you wish to

enumerate the OCR results rather than simply generate PDF, RTF or TXT outputs then you will also

need to add a reference to Aquaforest.Ocr.Definitions.

5.1 PreProcessor Class

A PreProcessor object, which must be created and passed to the Ocr object, controls all of the pre-

processing that can be performed on the input image in order to improve the quality of the output.

Instantiation of the PreProcessor object will initialise a default set of pre-processing options which

result in minimal image manipulation. For a full description of the pre-processing options available and

appropriate values see section 5.1.2 Properties below.

5.1.1 Constructor

PreProcessor preProcessor = new PreProcessor();

5.1.2 Properties

Property Description

bool Autorotate Auto-rotate the image – this will ensure all text oriented normally. The

default value is false (disabled). Note: When using a PDF source

Autorotation will be disabled on any pages already containing text.

int Binarize This value should generally only be used under guidance from technical

support. It can control the way that color images are processed and

force binarization with a particular threshold. A value of 200 has been

shown to generally give good results in testing, but this should be

confirmed with “typical” customer documents.

By setting this to -1 an alternative method is used which will attempt to

separate the text from any background images or colors. This can give

improved OCR results for certain documents such as newspaper and

magazine pages.

int BlankPageThreshold Use this to set the minimum number of "On Pixels" that must be present

in the image for a page not to be considered blank. A value of -1 will

turn off blank page detection. A value of 100 produced reasonable blank

page detection in testing, but the validity of this should be confirmed

using “typical” source documents.

int BoxSize This option is ideal for forms where sometimes boxes around text can

cause an area to be identified as graphics. This option removes boxes

from the temporary copy of the imaged used by the OCR engine. It

does not remove boxes from the final image. Technically, this option

removes connected elements with a minimum area (in pixels and

defined by this property). This option is currently only applied for

bitonal images.

11

PreProcessor Class Properties - Continued

Property Description

int Despeckle Despeckle the image – The method removes all disconnected elements

within the image that have height or width in pixels less than the

specified figure. The maximum value is 9 and the default value is 0.

bool Deskew Deskew (straighten) the image. The default value is false (disabled).

string Morph Image Morphology. This option should generally only be used under

guidance from technical support.

bool MRC This enables Mixed Raster Compression which can dramatically

reduce the output size of PDFs comprising color scans. Note that this

option is only suitable when the source is not a PDF.

int MRCBackground Sampling size for the background portion of the image. The higher the

number, the larger the size of the image blocks used for averaging which

will result in a reduction in size but also quality. Default value is 3

int MRCForeground Sampling size for the foreground portion of the image. The higher the

number, the larger the size of the image blocks used for averaging which

will result in a reduction in size but also quality. Default value is 3

int MRCQuality JPEG quality setting (percentage value 1 - 100) for use in saving the

background and foreground images. Default value is 75

bool NoPictures By default, if an area of the document is indentified as a graphic area

then no OCR processing is run on that area. However, certain

documents may include areas or boxes that are identified as “graphic” or

“picture” areas but that actually do contain useful text. Setting

NoPictures to true will cause it to ignore areas identified as pictures

whilst setting it to false will force OCR of areas identified as pictures.

bool RemoveLines When set to true this will enable the removal of lines. This feature is

particularly useful where pages contain tables and underlining which

can prevent the OCR engine from recognising characters. The lines are

removed only from the image used in OCR and not from the image used

in the final PDF if PDF creation is enabled.

bool ConvertToTiff Each page in the PDF document is rasterized to a TIFF image

12

5.1.3 Methods

Method Description

ConfigurePDFStamp(string

prefix, string suffix,

Nullable<int> start,

Nullable<int> digits,

PagePositionEnum position,

StampType stampType)

Using this method stamps can be configured to be added to each page of

the PDF output. The stamps contain one or more of the following:

 Prefix – a string to be added to the beginning of the stamp,

before the number section.

 Start – the value that the number portion of the stamp should

start at. The number portion will be incremented by 1 each

page.

 Digits – a value indicating the minimum length that the number

portion of the stamp should be displayed as. Preceding 0’s will

be used to pad any numbers less than this whilst numbers

greater than this will be displayed in full.

 Suffix - a string to be added to the end of the stamp, after the

number section.

Thus a stamp with Prefix = “Beginning”, Start = “1”, Digits = “4” and

Suffix = “End” would produce the text “Beginning0001End” on the first

page. Any one of these can be set to null resulting in the exclusion of

that part from the final text.

Additionally the stamp can be added either as visible searchable text or

as an image and can be positioned in one of the following:

 Top Left

 Top Centre

 Top Right

 Centre Left

 Centre

 Centre Right

 Bottom Left

 Bottom Centre

 Bottom Right

13

5.2 OCR Class

The OCR object is used to control OCR processing, obtain status updates during processing and

retrieve the resulting output from this processing upon completion.

5.2.1 Constructor

Ocr ocr = new Ocr();

5.2.2 Properties

Property Description

String ResourceFolder

This property can optionally be used to set the location of the

resources folder when the resources are not located in the same folder

as the assembly using the API.

SupportedLanguages

Language

Sets the language to be used for the OCR processing. This takes a

value from the enumeration SupportedLanguages which is defined in

the API. Default language is English.

bool EnablePDFOutput Enables or disables the production of Portable Document Format

output. Default value is false (disabled).

bool EnableTextOutput Enables or disables the production of simple text final output. Default

value is true (enabled).

bool EnableRTFOutput Enables or disables the production of Rich Text Format output.

Default value is false (disabled).

int StartPage Sets the first page of the source file that the OCR process will be begin

from (for a multipage source). Throws an

ArgumentOutOfRangeException if a source file has not been set

already (by using the ReadBMPSource or ReadTIFFSource method

prior to setting this property) or if the page is greater than the number

of pages in the source. By default the whole of the document will be

processed.

int EndPage Sets the last page of the source file that the OCR process will be run to

(for a multipage source). Throws an ArgumentOutOfRangeException

if a source file has not been set already (by using the ReadBMPSource

or ReadTIFFSource method prior to setting this property) or if the

page is greater than the number of pages in the source. By default the

whole of the document will be processed.

int CurrentPage Returns the current page for which the OCR has been performed. This

is useful only when using Recognize() in another thread.

bool

HandleExceptionsInternally

When set to true the Ocr object will catch any exceptions for method

calls and simply return false from the method. The exceptions caught

are stored in the LastException property overwriting any previous

value.

Exception LastException Stores last exception caught by the Ocr object.

bool EnableConsoleOutput If enabled then progress messages will be sent to the console. Default

is false.

14

OCR Class Properties - Continued

Property Description

string TempFolder Specifies a temporary folder for storing bitmap images and intermediate

output during OCR processing. If this is not specified, the first of the

following environment variables that is defined will be used : TMP,

TMPDIR, TEMP.

String License Specifies the license key

bool EnableConsoleOutput

If set to True, progress messages will be written to the console output.

Default false.

int EnableDebugOutput If set to a value greater than 0 (default value) debug messages will be

written to the console output. Please contact Aquaforest for guidance on

suitable values if you need to generate debug output.

bool

RemoveExistingPDFText

RemoveExistingPDFText if set to true will result in the removal of any

existing text from the output PDF*.

*Note: when PDF output is generated from a PDF source it is a

copy of the PDF that is manipulated rather than generating a new

one. This approach offers several advantages such as potential size

savings and performance enhancements.

bool

DeleteTemporaryFilesOnPa

geCompletion

When set to true the temporary files generated for each page during

OCR processing will be removed as soon as the OCR engine has

finished with them*.

*Note: the OCR engine is finished with the temporary files for a

page as soon as the output for that page is added to the overall

output. If you wish to use functionality such as ReadPageWords,

GetPageImage, etc then this will require that the temporary files are

available for the page requested and so will fail if

DeleteTemporaryFilesOnPageCompletion is true.

bool Dotmatrix Set this to true to improve recognition of dot-matrix fonts. Default value

is false. If set to true for non dot-matrix fonts then the recognition can

be poor.

bool OneColumn The default value for this is true which improves the handling of single

column text. Better handling of multi-column text such as magazine or

news print can be achieved.

bool OptimiseOcr [Deprecated] Use AdvancedPreProcessing instead.

bool

AdvancedPreProcessing

When set to true, this will enable the advanced pre-processing

functionality. See section 5.8 for details.

bool RetainTiffCreationDate Retains the creation date of the source TIFF file in the output PDF

document

bool CreationDate Set a custom creation date for the output PDF document.

Note: This will only work if the source file is TIFF

15

5.2.3 Methods

Method Description

void Abort() Stops processing of an ongoing call to Recognize.

Processing will stop on completion of any ongoing

page.

void DeleteTemporaryFiles() Removes temporary files created during the OCR

processing from the system. Note, do not call this

before you have completely finished processing a

file.

Image GetPageImage(int pageNumber) Returns a System.Drawing.Image containing the

processed image.

void Recognize(PreProcessor preProcessor) Performs any pre-processing defined in the

PreProcessor object and then carries out OCR

processing on the pre-processed image.

bool ReadBMPSource(string fileName) Checks for the existence of the source file and sets

up the OCR engine for handling the bitmap image.

bool ReadImageSource(Image image) Reads an Image object checking the number of

frames (pages).

bool ReadPDFSource(string fileName) Checks for the existence of the source file and sets

up the OCR engine for handling the PDF.

bool ReadPDFSource(string filename, string

password)

Checks for the existence of the source file and sets

up the OCR engine for handling the secure PDF

for which the password is provided. If PDF output

is generated from this the output will have no

security settings defined.

string ReadDocumentString() Returns a string containing the words from all

pages processed.

string ReadPageString(int pagenumber)

Returns a string containing the words from the

specified page.

string ReadPageString(int pagenumber, Rectangle

region)

Returns a string containing the words for the

specified page where the words are fully enclosed

in the bounds of the region specified.

Words ReadPageWords(int pagenumber)

Returns an instance of the Words class for the

specified page.

Words ReadPageWords(int pagenumber,

Rectangle region)

Returns an instance of the Words class for the

specified page where the words are fully enclosed

in the bounds of the region specified.

16

OCR Class Methods - Continued

Method Description

void ReadTIFFSource(string fileName) Checks for the existence of the source file and sets

up the OCR engine for handling the TIFF image.

bool SavePDFOutput(string fileName, bool

overwriteExisting)

Saves the output to a PDF file with the name

specified. If any text was extracted then this will

be searchable in the PDF.

bool SaveRTFOutput(string fileName, bool

overwriteExisting)

Saves the output to a RTF file with the name

provided.

bool SaveTextOutput(string fileName, bool

overwriteExisting)

Saves the text extracted to a simple text file with

the name provided.

17

5.2.4 Events

Event Description

void StatusUpdate (object sender,

StatusUpdateEventArgs statusUpdateEventArgs)

This event is raised when processing of a page is

complete. The StatusUpdateEventArgs object

provides access to information relating to the

status of the page processed.

5.2.5 Subscribing to StatusUpdate using C#

Include a reference to Aquaforest.OCR.Definitions.dll in the solution and define a method to match the

event signature, see below.

private void OcrStatusUpdate(object sender, StatusUpdateEventArgs

statusUpdateEventArgs)

{

 double confidenceScore = statusUpdateEventArgs.ConfidenceScore;

 // anything confidenceScore below 1 might be worth investigation

 int pageNumber = statusUpdateEventArgs.PageNumber;

 int rotation = statusUpdateEventArgs.Rotation;

 // rotation used in 90° steps from beginning

 // orientation (0), i.e. 1 = 90, 2 = 180, 3 = 270

 bool textAvailable = statusUpdateEventArgs.TextAvailable;

 bool imageAvailable = statusUpdateEventArgs.ImageAvailable;

 bool blankPage = statusUpdateEventArgs.BlankPage;

}

Finally add a new reference to the event on the OCR object:

_ocr.StatusUpdate += OcrStatusUpdate;

18

5.2.6 Subscribing to StatusUpdate using VB.NET

Include a reference to Aquaforest.OCR.Definitions.dll in the solution and define a method to match the

event signature, see below.

Declare the OCR object using “WithEvents”:

Private WithEvents _ocr As New Ocr

5.2.7 Enumerations

Enumeration Description

SupportedLanguages This enumeration includes all of the languages

currently supported by the API.

Private Sub OcrPageCompleted(ByVal sender As Object, ByVal

statusUpdateEventArgs As StatusUpdateEventArgs) Handles

_ocr.StatusUpdate

 Dim confidenceScore As Double

 Dim pageNumber As Integer

 Dim rotation As Integer

 Dim textAvailable As Integer

 Dim imageAvailable As Integer

 Dim blankPage As Boolean

 confidenceScore = statusUpdateEventArgs.ConfidenceScore

 ' anything confidenceScore below 1 might be worth

 ' investigation

 pageNumber = statusUpdateEventArgs.PageNumber

 rotation = statusUpdateEventArgs.Rotation

 ' rotation used in 90° steps from beginning orientation (0),

 ' i.e. 1 = 90, 2 = 180, 3 = 270

 textAvailable = statusUpdateEventArgs.TextAvailable

 imageAvailable = statusUpdateEventArgs.ImageAvailable

 blankPage = statusUpdateEventArgs.BlankPage

End Sub

19

5.3 StatusUpdateEventArgs Class

This class contains information relating to the conversion status of a page.

5.3.1 Constructor

An instance of this class is obtained for each page processed when subscribing to the event

StatusUpdate.

5.3.2 Properties

Property Description

int PageNumber This property returns page for which the object relates to.

int Rotation A value from 0 to 3 which indicates the rotation used for the output

in terms of the number of 90° steps away from the orientation in

which the input page was provided. If AutoRotation is set to false

this will always be 0.

double ConfidenceScore

Generally a value of 1 or greater would indicate that reasonable

OCR of a page, but this should be confirmed using “typical”

source files.

bool TextAvailable This property indicates whether text was extracted for the page.

bool ImageAvailable This property indicates whether an image (after all appropriate pre-

processing) was successfully extracted.

bool BlankPage This property indicates whether the page was detected as blank.

20

5.3.3 Words Class

This class contains a collection of WordData objects which are available on a page by page basis.

5.3.4 Constructor

An instance of this class is obtained by calling the ReadPageWords method on the Ocr object, passing

the page for which the words are required.

5.3.5 Properties

Property Description

int Count

This property returns the number of WordData objects in the

collection.

int Height This property returns the height of the current word.

int Width This property returns the width of the current word.

5.3.6 Methods

Method Description

WordData GetFirst() Returns the first WordData object in the collection and sets the

index to this item.

WordData GetNext() Returns the next WordData object in the collection and sets the

index to this item.

int GetHeight(int index) Returns the word height from the WordData object stored at the

specified index in the collection.

int GetWidth(int index) Returns the word width from the WordData object stored at the

specified index in the collection.

21

5.3.7 WordData Class

This class contains the individual characters along with the positional information relating to each

character in the word and to the word as a whole.

5.3.8 Properties

Property Description

float AverageCharacterHeight

This property returns the average height of all the characters in the

word.

float AverageCharacterWidth This property returns the average width of all the characters in the

word.

int Bottom This property returns the bottom of the word.

int CharacterList This property returns a list of CharacterData objects for the word.

int Height This property returns the height of the word.

int Left This property returns the left edge of the word.

int Top This property returns the Top of the word.

int Width This property returns the width of the word.

string Word This property returns the word as a string.

22

5.4 PdfMerger Class

This class can be used to merge two PDFs

5.4.1 Constructor

PdfMerger pdfMerger = new PdfMerger("C:\\out\\Merged.pdf");

5.4.2 Methods

Method Description

void Append(string

pdfFileToAdd)

Appends the document specified to the in memory PDF document.

void Close() Writes the output to the file specified in the constructor.

void Dispose() Clears any resources not yet released. This is useful if Close

(which will automatically free such resources) is not called, for

example if as a result of an error you do not wish to write the

merged output.

23

5.5 Error Handling

There are two options regarding error handling using the API.

1. Using the default settings various exceptions can be thrown by the Ocr object so these should

be trapped within the calling code.

2. Alternatively HandleExceptionsInternally can be set to true with the result that method calls

will return false on error but throw no exceptions. The calling code can obtain the last

exception from the LastException property if details of the failure are required.

5.6 Disposal and Temporary Files folders

During the OCR processing various temporary files are generated and used at different stages. These

temporary files can be removed by calling DeleteTemporaryFiles. However, such a call should not be

made until all processing (both within the Ocr object and calling code) on a file is complete as these

files are required when calling SaveRTFOutput, SavePDFOutput, SaveTextOutput, GetPageImage and

ReadPageWords. When the Ocr object is disposed of the temporary files are automatically removed.

5.7 Multi-threaded applications

Temporary files created and used throughout the OCR processing are named according to the page

number, therefore if Ocr objects are instantiated in multiple threads then a different temporary folder

must be set for each folder. If this is not done then un-expected behaviour will result.

5.8 Advanced pre-processing

When the AdvancedPreProcessing property on the OCR object is set to false the OCR and image

processing engines will use the settings in the ImagePreProcessingDefaults section of the file

Properties.xml modified by any properties set on the OCR and PreProcessing objects.

Setting AdvancedPreProcessing to true will enable the use of these default settings first (without

modification by the properties set on the OCR and PreProcessing objects) followed by the same

defaults modified by the values in the ImagePreProcessing sections from ID="1" to ID="n" where n is

the last consecutive set defined in Properties.xml.

Using heuristics and dictionary lookup the quality of the OCR output is then compared in order to

determine the optimum set to output. In this way it is possible to define different sets of OCR and pre-

processing conditions that are suited to different types of source documents. This approach can also

improve the handling of documents that contain different types of pages, e.g. scanned at different

qualities, containing different languages, containing standard and dot matrix prints, etc.

24

5.9 Properties File

The following are descriptions of those properties in the file Properties.xml that are most likely to be

changed to improve engine performance. If you require further information regarding any properties in

the file then please contact Aquaforest via support@aquaforest.com for assistance.

Binarize – This setting determines how the image will be converted into a bitonal one for OCR. The

following are valid options:

-1 – This utilizes a technique whereby those parts of the image that have certain characteristics

indicative of characters are extracted from the underlying image. This approach can give the

best results on pages such as magazine images, news print, etc. and will handle light text on

darker backgrounds. This approach can cause an increase in processing time with certain

images.

0 – This utilizes the binarization capabilities built into the OCR engine and whilst it can give

good results in limited situations it is not generally recommended.

>0 – A value greater than 0 (the recommended default is 200) will use a simple threshold

technique comparing the intensity of the pixel to the threshold value to determine whether it

should be set to black or white. This simple approach is the fastest option.

BoxSize – Setting a value above 0 will cause the removal of enclosing boxes from the image used for

the OCR processing. The default recommended is 100, i.e. where the box edges are 100 pixels or

greater.

BackgroundFactor - Sampling size for the background portion of the image. The higher the number, the

larger the size of the image blocks used for averaging which will result in a reduction in size but also

quality. Default value is 3

DotMatrix - Set this to True to improve recognition of dot-matrix fonts. Default value is False. If set to

true for non dot-matrix fonts then the recognition can be poor

ForegroundFactor - Sampling size for the foreground portion of the image. The higher the number, the

larger the size of the image blocks used for averaging which will result in a reduction in size but also

quality. Default value is 3

Jbig2EncFlags – These are the flags that will be passed to the application used to generate JBIG2

versions of images used in PDF generation (assuming this compression is enabled). Options are as

follows:

-b <basename>: output file root name when using symbol coding

-d --duplicate-line-removal: use TPGD in generic region coder

-p --pdf: produce PDF ready data

-s --symbol-mode: use text region, not generic coder

-t <threshold>: set classification threshold for symbol coder (def: 0.85)

-T <bw threshold>: set 1 bpp threshold (def: 188)

-r --refine: use refinement (requires -s: lossless)

-O <outfile>: dump thresholded image as PNG

-2: upsample 2x before thresholding

-4: upsample 4x before thresholding

-S: remove images from mixed input and save separately

-j --jpeg-output: write images from mixed input as JPEG

-v: be verbose

mailto:support@aquaforest.com

25

Language – The acceptable vales are as follows:

0 - English

1 - German

2 - French

3 - Russian

4 - Swedish

5 - Spanish

6 - Italian

7 - Russian English

8 - Ukrainian

9 - Serbian

10 - Croatian

11 - Polish

12 - Danish

13 - Portuguese

14 - Dutch

19 - Czech

20 - Roman

21 - Hungarian

22 - Bulgarian

23 - Slovenian

24 - Latvian

25 - Lithuanian

26 - Estonian

27 - Turkish

MaxDeskew – Maximum angle by which a page will be deskewed

Morph – Morphological options that will be applied to the binarized image before OCR. If left blank

none is applied. Common options include those listed below but for more options please contact

support@aquaforest.com:

d2.2 – 2x2 dilation applied to all black pixel areas, useful for faint prints.

e2.2 – 2x2 erosion applied to all black pixel areas, useful for heavy prints.

c2.2 – closing process that performs a 2x2 dilation followed by a 2x2 erosion with the result

that holes and gaps in the characters are filled.

NoPictures - By default, if an area of the document is indentified as a graphic area then no OCR

processing is run on that area. However, certain documents may include areas or boxes that are

identified as “graphic” or “picture” areas but that actually do contain useful text. Setting NoPictures to

True will cause it to ignore areas identified as pictures whilst setting it to False will force OCR of areas

identified as pictures.

OneColumn - The default value for this is true which improves the handling of single column text.

Better handling of multi-column text such as magazine or news print can be achieved.

PdfToImage – The SDK ships with two engines for the conversion of PDF pages to images for OCR.

The default engine is used when this is set to 0 but if certain PDF source documents are proving

problematic then the alternate engine can be used by changing this value to 1.

mailto:support@aquaforest.com

26

PdfToImageIncludeText – When set to False this will prevent the conversion of real text (i.e.

electronically generated as opposed to text that is part of a scanned image) from being rendered in the

page images extracted from the PDF. This is because the text is already searchable and so generally

does not require OCR. The value can be set to True however if the OCR is required on this real text.

Quality - JPEG quality setting (percentage value 1 - 100) for use in saving the background and

foreground images. Default value is 75

RemoveLines – The value used in Line removal. If blank no line removal will occur. The normal value

to use to enable line removal is 100.5 but it you are experience difficulties with this value or have any

questions then please contact support@aquaforest.com.

mailto:support@aquaforest.com

27

6 BACKGROUND - SEARCHABLE PDFS

6.1 What is a Searchable PDF?

A searchable PDF file is a PDF file that includes text that can be searched upon using the standard

Adobe Reader “search” functionality. In addition, the text can be selected and copied from the PDF.

Generally, PDF files created from Microsoft Office Word and other documents are by their nature

searchable as the source document contains text which is replicated in the PDF, but when creating a

PDF from a scanned document and an OCR process needs to be applied to recognize the characters

within the image.

6.2 Inside a Searchable PDF

In the context of Document Imaging, a searchable PDF will typically contain both the original scanned

image plus a separate text layer produced from an OCR process. The text layer is defined in the PDF

file as invisible, but can still be selected and searched upon. PDF files are able to store images using

most of the native compression schemes used in TIFF files, so for example Group 4 TIFF files do not

usually require any format conversion.

6.3 OCR Accuracy

A number of factors affect the accuracy of the text produced by the OCR process – 100% accuracy is

certainly possible under good conditions but each of the following issues, and OCR processing options

will have an impact.

6.3.1 Original Image Quality

Although some pre-processing options such as despeckle and deskew can help in some cases, the visual

quality of the original scan is of paramount importance.

6.3.2 Image DPI and Format

The image resolution should be at least 150 DPI for OCR processing, and preferably 300 DPI for

optimal results, although for good quality scans 200 DPI is often sufficient. Non-lossy formats (TIFF

Group 4, LZW etc) are preferred over lossy formats such as JPEG.

6.3.3 Despeckle

This pre-processing option removes isolated “dots” within the image which can cause recognition

problems, and makes the result image “cleaner”.

28

6.3.4 Deskew

This option can improve OCR results by straightening crooked pages.

6.3.5 Auto-Rotate

OCR processing usually recognizes text written top-to-bottom, left-to-right, so pages that are orientated

any other way (usually landscape pages) need to be re-oriented to enable recognition.

6.3.6 Graphics Areas

There are two options that can be used to control how the OCR engine processes parts of the document

image that appear to be graphics areas.

To ensure that the OCR engine can be forced to process such areas there are two options :

“Treat all Graphics Areas as Text”. This option will ensure the entire document is processed as text.

“Remove Box Lines in OCR Processing”. This option is ideal for forms where sometimes boxes

around text can cause an area to be identified as graphics. This option removes boxes from the

temporary copy of the imaged used by the OCR engine. It does not remove boxes from the final image.

Technically, this option removes connected elements with a minimum area (by default 100 pixels).

6.3.7 Language Settings

The language setting determines the set of characters that will be recognized, and the dictionary that

will be used as a guide.

6.4 Hardware and Performance

6.4.1 CPU Power

The OCR process is highly CPU intensive and will benefit from being given as much CPU power as

possible. As a guide about 2,000 pages per hour can be processed on a 3.0 GHz processor core,

although this will vary according to the source document and OCR options chosen.

6.4.2 Exploiting Multiple CPUs

To take advantage of multiple cores, multiple OCR instances should be run in parallel.

6.4.3 Memory

Memory can be a limiting factor when creating the final PDF, in the case of very large documents. A

rule of thumb would be to have 1GB – 1.5 GB of memory per processor core.

29

7 ACKNOWLEDGEMENTS

This product makes use of a number of Open Source components which are included in binary form.

The appropriate acknowledgements and copyright notices are given below.

LEPTONICA
Copyright (C) 2001 Leptonica. All rights reserved.

LIBJPEG
This software is based in part on the work of the Independent JPEG Group.

ZLIB
(C) 1995-2004 Jean-loup Gailly and Mark Adler.

ITEXT 4.1.6
Copyright (C) 1999-2009 by Bruno Lowagie and Paulo Soares et all. All Rights Reserved. Binaries distributed

under the Mozilla Public License.

CUNEIFORM
Copyright (c) 1993-2008, Cognitive Technologies. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the

following conditions are met

Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the

name of the Cognitive Technologies nor the names of its contributors may be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

LIBTIFF
Copyright (c) 1988-1997 Sam Leffler. Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby

granted without fee, provided that (i) the above copyright notices and this permission notice appear in all copies of

the software and related documentation, and (ii) the names of Sam Leffler and Silicon Graphics may not be used in

any advertising or publicity relating to the software without the specific, prior written permission of Sam Leffler

and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR

OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY

SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE

POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH

THE USE OR PERFORMANCE OF THIS SOFTWARE.

FREEIMAGE
This software uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details.

FreeImage is used under the (FIPL), version 1.0.

